
InstallingPV.hyper

InstallingPV.hyper ii

COLLABORATORS

TITLE :

InstallingPV.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY August 26, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

InstallingPV.hyper iii

Contents

1 InstallingPV.hyper 1

1.1 Installing PowerVisor (Tue Jul 14 16:48:08 1992) . 1

1.2 Installing PowerVisor : Commands used in this tutorial . 2

1.3 Installing PowerVisor : Functions used in this tutorial . 2

1.4 Installing PowerVisor : Introduction . 2

1.5 Installing PowerVisor : The ’mode’ command . 2

1.6 Installing PowerVisor : The ’prefs’ command . 4

1.7 Installing PowerVisor : The maximum number of lines in the history . 4

1.8 Installing PowerVisor : Some standard keys . 5

1.9 Installing PowerVisor : Setting the startup screen size . 6

1.10 Installing PowerVisor : Setting the stack fail level . 6

1.11 Installing PowerVisor : Setting default logical window parameters . 6

1.12 Installing PowerVisor : The default commandline length . 9

1.13 Installing PowerVisor : Some debug preferences . 9

1.14 Installing PowerVisor : Debug mode . 10

1.15 Installing PowerVisor : Installing pens . 10

1.16 Installing PowerVisor : Setting the default font . 13

1.17 Installing PowerVisor : The config file . 13

1.18 Installing PowerVisor : Other installation factors . 13

1.19 Installing PowerVisor : Setting the colours . 14

1.20 Installing PowerVisor : Setting alias commands . 14

1.21 Installing PowerVisor : Attaching commands to keys . 15

1.22 Installing PowerVisor : Files . 15

1.23 Installing PowerVisor : Logical windows . 17

1.24 Installing PowerVisor : For the wizards . 17

InstallingPV.hyper 1 / 17

Chapter 1

InstallingPV.hyper

1.1 Installing PowerVisor (Tue Jul 14 16:48:08 1992)

Contents:

Introduction

The ’mode’ command

The ’prefs’ command

The maximum number of lines in the history

Some standard keys

Setting the startup screen size

Setting the stack fail level

Setting default logical window parameters

The default commandline length

Some debug preferences

Debug mode

Installing pens

Setting the default font

The config file

Other installation factors

Setting the colours

Setting alias commands

Attaching commands to keys

InstallingPV.hyper 2 / 17

Files

Logical windows

For the wizards
Various:

Commands used in this tutorial

Functions used in this tutorial
Back to main contents

1.2 Installing PowerVisor : Commands used in this tutorial

mode Set PowerVisor preferences
prefs Set preferences
screen Set PowerVisor on another screen

1.3 Installing PowerVisor : Functions used in this tutorial

None

1.4 Installing PowerVisor : Introduction

At this moment (after you have read GettingStarted , Expressions
and Screens and Windows) you are probably ready to customize PowerVisor.
This is a complex business and you will probably want to change some
parameters later when you really start to use PowerVisor.

1.5 Installing PowerVisor : The ’mode’ command

With the mode command you can set some parameters. The ’mode’ command
expects any number of keywords. These keywords need not be in any
particular order.
The following keywords are supported :

pal set monitor to pal (only AmigaDOS 2.0)
the non-interlaced resolution is 640x256 and the
interlaced resolution is 640x512. This resolution will be
bigger if you use overscan.

ntsc set monitor to ntsc (only AmigaDOS 2.0)
non-interlaced : 640x200
interlaced : 640x400

vga set monitor to vga (only AmigaDOS 2.0 and new denise)
non-interlaced : 640x480
interlaced : 640x960

viking set monitor to a2024 (only AmigaDOS 2.0)

InstallingPV.hyper 3 / 17

resolution : 1024x1008

lace use interlace
nolace no interlace (default)

fancy use two bitplanes for the PowerVisor screen (default)
nofancy use only one bitplane

sbottom include the size gadget in the bottom border. This means
that you loose a line but you gain some columns (default)

nosbottom include the size gadget in the right border of the window.
You loose some columns but you gain a line or so

space add a space after a snapped word (default)
nospace don’t add a space. Simply snap the word as it is

lonespc snap a space if you click on an empty place in a logical
window

nolonespc don’t snap a space (default)

shex show hex words when disassembling instructions. The
disadvantage is that these words could overwrite the right
side of the symbolname if present (default)

noshex don’t show hex words. Symbols will be completely visible

dec display all printed integers as decimal only
hex display all printed integers as hexadecimal only
hexdec first display hex, than display decimal (default)

more enable -MORE- check for the ’Main’ logical window (default)
nomore disable -MORE- check

auto perform an automatic list whenever the current list changes
noauto don’t do this (default)

byte list memory as bytes (for the memory command)
word list memory as words
long list memory as longs (default)
ascii list memory as ascii

fb feedback each command as it is typed in by the user on
the current logical window (default)

nofb don’t do this

patch patch the Exec AddTask function. When this function is
patched by PowerVisor crashtrapping will work better
for all new tasks created after the patch is applied.
This is recommended if you use resident breakpoints
(see Debugging). Note that it is not safe to
run other debuggers (like CodeProbe or MonAm) when
the patch is applied. They will probably crash when
you try to trace with them. There will (probably) be
no problems if you start the other debugger and load
the debug program with this debugger BEFORE you
apply the patch (before you start PowerVisor or before
you type ’mode patch’). (default)

nopatch Don’t patch the Exec AddTask function. When the AddTask

InstallingPV.hyper 4 / 17

function is not patched, PowerVisor will trap a crash
a bit later (too late if you plan to use resident
breakpoints). With the patch applied PowerVisor traps
crashes just on the spot while if the patch is not
applied PowerVisor will only trap the crash just before
the guru would normally arrive (you will even have to
press ’cancel’ on the ’task-held’ requester before
PowerVisor notices the crash). But ’mode nopatch’ is
the only safe way to run other debuggers concurrently
with PowerVisor.

intui if this option is set, PowerVisor will also open a
physical window (or Intuition window) everytime you
open one of the standard logical windows (’Extra’,
’Debug’, ...) with the standard commands (xwin ,
dwin , ...) (not with openlw). This is useful if
you prefer to work with Intuition windows instead of
PowerVisor logical windows. The logical window
is of course opened in this physical window (with the
same name).

nointui Simply open each standard logical window in the ’Main’
physical window (default)

Example, to set everything other than default you can use :

< mode lace fancy nospace lonespc noshex dec nomore auto byte nofb nopatch
< intui <enter>

All the parameters set with the ’mode’ command will be saved with the
saveconfig command (see later).

1.6 Installing PowerVisor : The ’prefs’ command

Using the prefs command you can install some additional parameters.
All parameters installable with the ’prefs’ command will be saved when
you use saveconfig .
The following sections deal with all parameters you can set with ’prefs’.

1.7 Installing PowerVisor : The maximum number of lines in the history

Using ’prefs history’ (see prefs) you can get or set the maximum number
of lines in the history buffer. The default is 20.

< prefs history <enter>
> 00000014 , 20

You can set another value with :

< prefs history 500 <enter>

Note that the history buffer is dynamic. If there are 10 lines in the

InstallingPV.hyper 5 / 17

history buffer you only loose memory for 10 lines even if the maximum
number of lines is 500.

The command also clears the history buffer.

1.8 Installing PowerVisor : Some standard keys

Using ’prefs key’ (see prefs) you can get or set keycodes for standard
keys. The following keys are supported :

nr name default key code qualifier

0 interrupt key <esc> 045 0
1 hot key <r-shift>+<r-alt>+’/’ 03A 022
2 pause key <r-alt>+<help> 05F 020
3 cycle active logwin <tab> 042 0
4 history up <arrow up> 04C 0
5 history down <arrow down> 04D 0

You can look at the current values with :

< prefs key 2 <enter>
> 005F 0020

Or you can set it to other values with :

< prefs key 0 16 0 <enter>

This command will set the interrupt key to the ’q’ key (or the ’a’ key
if you have an AZERTY keyboard). This is only an example. I recommend
that you choose better keys :-)

Here are some codes that are often used :

<esc> 045
<tab> 042
<F1> 050
. .
. .
. .
<F10> 059
<backspace> 041
<help> 05F
 046
<up> 04C
<down> 04D
<left> 04F
<right> 04E
<return> 044
<enter> (numeric keypad) 043

Here are the qualifers. You must add two qualifiers if you want to use
a combination :

Left shift 0001

InstallingPV.hyper 6 / 17

Right shift 0002
Capslock 0004 (this one is ignored by PowerVisor)
Control 0008
Left alt 0010
Right alt 0020
Left Amiga 0040
Right Amiga 0080

1.9 Installing PowerVisor : Setting the startup screen size

With ’prefs screen’ (see prefs) you can define the width and height of
the PowerVisor screen. If you have AmigaDOS 2.0 you can use any size for
the screen. If this size is big you can scroll by moving the mouse out of
the visible part of the screen.

The default is (65535,65535) (or (-1,-1) as words).Which means that
PowerVisor will take the default width and height for the screen.

< prefs screen <enter>
> -1 -1

For example, to make the screenheight equal to 1024 use the following
command :

< prefs screen -1 1024 <enter>

You need to quit PowerVisor and start it again to see the result of this
command.

1.10 Installing PowerVisor : Setting the stack fail level

With ’prefs stack’ (see prefs) you can set or get the amount of
stackspace left before PowerVisor will halt the task and give a warning
(only if account is on with the account command).
The default value is 40.

< prefs stack <enter>
> 00000028 , 40

Change it with :

< prefs stack 80 <enter>

Be careful not to make it too big, or else all tasks will be stopped even
if nothing is wrong. This will almost certainly crash your Amiga.

1.11 Installing PowerVisor : Setting default logical window parameters

InstallingPV.hyper 7 / 17

Using ’prefs logwin’ (see prefs) you can set or get default parameters
for the standard logical windows (’Main’, ’Extra’, ’Refresh’, ’Debug’,
’Rexx’, ’PPrint’ and ’Source’).

Four values are remembered for each standard logical window :

- the number of columns
- if 0 we scale the number of columns to the visible size at the

moment the logical window is created. After that the number of
columns is fixed

- if -1 we use horizontal autoscale. The number of columns is
adapted to the visible size everytime the horizontal visible size
changes. The disadvantage of this is that the logical window is
cleared

- every other value sets a fixed number of columns
- the number of rows

- (like the number of columns)
- the flag mask
- the flag values in this mask

The following flags are supported (also see Screens and Windows) :
(bit 0/bit 1)

-MORE- disable/enable 4
top-visible/real-top 32
statusline on/off 64
interrupt on/off 128
auto output snap 256

All other bits are used or reserved and should not be used in the mask.

For example. To set the -MORE- check off, the statusline off and leave
all other flags as default you can use :

mask = 4+64
value = 64

Or with -MORE- check on :
mask = 4+64
value = 4+64

The following default values are used when a logical window is opened :
-MORE- disabled
Interrupt/Pause enabled
Home position is top-visible
Status line on
Auto Output Snap off

The standard logical windows have the following defaults (Note that the
-MORE- setting of the ’Main’ logical window is dependent on the
mode command) :

- Main (0,0,160,0)
number of columns and rows is set to a fixed value. This
value is the maximum number of columns and rows at the time
the logical window is created.

Interrupt/Pause enabled
Home position is top-visible

InstallingPV.hyper 8 / 17

Auto Output Snap is on

- Extra (0,0,160,0)
number of columns and rows is set to a fixed value. This
value is the maximum number of columns and rows at the time
the logical window is created.

Interrupt/Pause enabled
Home position is top-visible
Auto Output Snap is on

- Refresh (0,50,160,160)
the number of columns is set to a fixed value. This value is
the maximum number of columns at the time the logical window
is created. The number of rows is fixed and always set to
50.

Interrupt/Pause disabled
Home position is real-top
Auto Output Snap is off

- Debug (90,42,160,160)
the number of columns is fixed and set to 82. The number of
rows is fixed and set to 42.

Interrupt/Pause disabled
Home position is real-top
Auto Output Snap is off

- Rexx (0,50,160,128)
the number of columns is set to a fixed value. This value is
the maximum number of columns at the time the logical window
is created. The number of rows is fixed and always set to
50.

Interrupt/Pause disabled
Home position is top-visible
Auto Output Snap is off

- PPrint (0,50,160,128)
the number of columns is set to a fixed value. This value is
the maximum number of columns at the time the logical window
is created. The number of rows is fixed and always set to
50.

Interrupt/Pause disabled
Home position is top-visible
Auto Output Snap is off

- Source (-1,-1,160,160)
the number of columns and rows are autoscalable.

Interrupt/Pause disabled
Home position is real-top
Auto Output Snap is off

InstallingPV.hyper 9 / 17

To get the defaults :

< prefs logwin debug <enter>
> 90 42 00A0 00A0

To set other defaults :

< prefs logwin debug 100 50 160 160 <enter>

You need to quit PowerVisor and start it again to see the result of this
command when applied to the ’Main’ logical window. For all other logical
windows you can simple close/open them to see the changes. You can also
use the setflags command to set the flags for a logical window
immediatelly (also for ’Main’), and the colrow command to set the
number of columns and rows immediatelly.

1.12 Installing PowerVisor : The default commandline length

With ’prefs linelen’ (see prefs) you can set or get the maximum length
of the stringgadget commandline. This is also the maximum number of
characters that may be used in scripts (not ARexx scripts). The default is
400. Note that PowerVisor uses 800 bytes with a linelength of 400 (always
double).

To get the current length :

< prefs linelen <enter>
> 00000190 , 400

To set another value :

< prefs linelen 1000 <enter>

You need to quit PowerVisor and start it again to see the result of this
command.

1.13 Installing PowerVisor : Some debug preferences

With ’prefs debug’ (see prefs) you can set or get some preferences for
the debugger. The first argument is the number of instructions to
disassemble after each trace and the second argument is 0 or 1 if you want
the disassemble the previous instruction (no or yes resp.) after each
trace. The values set with this command are also used by the fullscreen
debugger. Default is 5,1. This means 5 instructions and yes, disassemble
the previous executed instruction too.

< prefs debug <enter>
> 00050001 , 327681

You can set other values using :

< prefs debug 15 0 <enter>

InstallingPV.hyper 10 / 17

(15 instructions and no previous instruction)

1.14 Installing PowerVisor : Debug mode

Using ’prefs dmode’ (see prefs) you can set the information that should
be displayed after a trace. This parameter is not used by the fullscreen
debugger since the fullscreen debugger always shows all information.

You can set the following parameters :

n show no info at all. This is useful when you are using the
fullscreen debugger and you do not want to be disturbed
by output on the current logical window

r show only registers
c show only code (using the format describe in the previous

section)
f show registers and code (default)

For example :

< prefs dmode n <enter>

1.15 Installing PowerVisor : Installing pens

Every color you see on the PowerVisor screen or window can be changed.
You can do this with the color command. This command changes the
RGB values for a color. The disadvantage is of course that this change
affects all uses of that color. But don’t worry, PowerVisor gives you
the option to change virtually every color. This is because PowerVisor
uses a pen array (the idea is stolen from AmigaDOS 2.0) to access each
color. Using ’prefs pens’ (see prefs) you can view or change this pen
array.

There are 48 pens. The first 24 are for fancy screens (2 or more
bitplane screens) and the last 24 are for 1 bitplane screens. Only the
first 21 pens are used for both the fancy and no-fancy screens. The other
pens are reserved for future use.

With no arguments this command lists all pens on two lines: the
first line containing all pens for fancy screens and the second
line for no-fancy screens.

Here follow the currently defined pen numbers and there default
color values. Add 24 to the pen number to get the no-fancy screen
pen number :

nr name default fancy default no-fancy

0 BoxBackground 0 0
1 LogWinBackground 0 0
2 NormalText 1 1

InstallingPV.hyper 11 / 17

3 PrompText 1 1
4 StatusTextInActive 1 1
5 StatusTextActive 2 0
6 InActiveBar 0 0
7 ActiveBar 3 1
8 TopLeft3D 2 1
9 BottomRight3D 1 1
10 BoxLine 1 1
11 PositionBox 0 0
12 TopLeftBox 1 1
13 BottomRightBox 2 1
14 PositionIndicator 3 1
15 SGInActiveText 3 1
16 SGInActiveBackground 0 0
17 SGActiveText 1 1
18 SGActiveBackground 0 0
19 HilightPen 2 0
20 HilightBackPen 0 1

(To see the effect of pen changes you should open/close your windows first.
For most pens the effect is immediatelly visible and for some pens (like
the SG... pens) the change is only visible after exiting PowerVisor)

The ’BoxBackground’ pen is used to draw the background of a box (see the
’Screen’ tutor file for more information about boxes). This pen color is
usually the same as the ’LogWinBackground’ pen explained below. If you
insist on using another value you will see a small border in each of your
logical windows. This small border will grow if you make the number of
columns and lines in the logical window smaller than the visible size

The ’LogWinBackground’ pen is the background pen used in a logical window.
This pen is only used on places where characters CAN appear. This explains
the small border that you see when you change the ’BoxBackground’ pen. The
small border is the region of the logical windows where no characters can
appear

The ’NormalText’ pen is used to print all text in logical windows. This
pen should be different from ’LogWinBackground’, otherwise you will see
nothing

The ’PromptText’ pen is used to print the prompt (the current list
indicator). This pen should be different from ’BoxBackground’, otherwise
the prompt will be invisible

The ’StatusTextInActive’ pen is used to print the name of the logical
window in the logical window bar when the logical window is inactive
(the active logical window is the window where you can scroll)

The ’StatusTextActive’ pen is used to print the name of the logical window
in the logical window bar when the logical window is active

The ’InActiveBar’ pen is used as background for the logical window bar
when the logical window is inactive. This pen should be different from
’StatusTextInActive’

The ’ActiveBar’ pen is used as background for the logical window bar

InstallingPV.hyper 12 / 17

when the logical window is active. This pen should be different from
’StatusTextActive’

The ’TopLeft3D’ and ’BottomRight3D’ pens are used for all 3D borders
(at this moment only the border round the logical window bar uses these
pens). The ’TopLeft3D’ pen should be a light color and ’BottomRight3D’
should be dark. This is to ensure the raised 3D effect of the border

The ’BoxLine’ pen is used to draw the line between horizontally arranged
logical windows. It should be different from ’BoxBackground’

The ’PositionBox’ pen is used to draw the background of the position
indicator at the right of the logical window bar

The ’TopLeftBox’ and ’BottomRightBox’ pens are used for the recessed
3D border round the position indicator. Note that this border is
dithered when PowerVisor is in no-fancy mode

The ’PositionIndicator’ pen is used for the little knob in the
position indicator. This pen should be different from the ’PositionBox’
pen

’SGInActiveText’ is used for the color of the text when the stringgadget
is inactive (only AmigaDOS 2.0)

’SGInActiveBackground’ is used for the color of the stringgadget background
when it is inactive (only AmigaDOS 2.0)

’SGActiveText’ is used for the color of the text when the stringgadget
is active (only AmigaDOS 2.0)

’SGActiveBackground’ is used for the color of the stringgadget background
when it is active (only AmigaDOS 2.0)

’HilightPen’ is used for the color of the hilighted text (used by the
fullscreen debugger for example)

’HilightBackPen’ is the background color for hilighted text. With this
you can achieve the effect of inverse video if you want

Example :

< prefs pens <enter>
> 0 0 1 1 1 2 0 3 2 1 1 0 1 2 3 3 0 1 0 2 0 0 0 0
> 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0

Change the color of normal text to blue (or the color installed on
color 3) :

< prefs pens 2 3 <enter>

InstallingPV.hyper 13 / 17

1.16 Installing PowerVisor : Setting the default font

With the setfont) command it is possible the set the font for one logical
window. But this command only sets the font for the text in the logical
window. The font is not set for the size bar. With the ’prefs font’ command
(see prefs)
you can set the default font used by everything in PowerVisor. This default
font is used by all logical windows (except when you ’setfont’ them with
another font), the stringgadget, the screen titlebar and the size bars
between all logical windows.

Example :

< prefs font <enter>
> topaz.font : 8 0 0

This is the default (topaz.font, size 8, style 0 and flags 0)

If you want to use topaz.font 9 for example you can use :

< prefs font topaz.font 9 0 0 <enter>
< saveconfig <enter>
< quit <enter>

CLI< run pv <enter>

And the default font for everything will be topaz 9.

1.17 Installing PowerVisor : The config file

All parameters set with the mode or prefs commands can be saved using
the saveconfig command. This command will create a file called
s:PowerVisor-config. If this file is not present when PowerVisor starts,
the default values are used.

Example :

< saveconfig <enter>

1.18 Installing PowerVisor : Other installation factors

There are still other things that you can install. But these things are not
saved in the s:PowerVisor-config file. If you want to set them auto-
matically you’ll have to include the right commands in the s:PowerVisor-
startup file. See the Scripts chapter for more information
about scripts in general.

InstallingPV.hyper 14 / 17

1.19 Installing PowerVisor : Setting the colours

With the color command you can set the default colours for the PowerVisor
screen.

Example, to get the 3D colours used by Workbench 2.0 when you have opened
PowerVisor on a 2 bitplane screen you can use :

< color 0 10 10 10 <enter>
< color 1 0 0 0 <enter>
< color 2 15 15 15 <enter>
< color 3 6 7 9 <enter>

If you use these values the 3D design (the statusline) will be very nice.

You can’t use the ’color’ command when PowerVisor is on another screen.

1.20 Installing PowerVisor : Setting alias commands

Using the alias command you can define other commands.
Note that there are already a lot of predefined aliases in the
s:PowerVisor-startup file. See the Alias Reference chapter for more
information about these aliases.

Some extra examples :

< alias lfd ’loadfd [] fd:[]_lib.fd’ <enter>

You have defined a command ’lfd’. When you type something like :

< lfd exec <enter>

The command will be expanded and the following command will be executed :

< loadfd exec fd:exec_lib.fd <enter>
> ...

This command loads an fd-file in memory.

< alias opwin ’{openpw [] 0 0 300 200;openlw [] [] 80 40}’ <enter>

Defines an alias ’opwin’ that opens a physical window and a logical window
in this physical window.

If you use the group operator in the alias string, alias expansion will
be done again. So you can use aliases in an alias allowing for recursive
alias definitions. The following two commands define a new command ’fact’
to compute the facultaty of its argument :

< alias _fact ’void if(([])==1,1,{_fact ([])-1}*([]))’ <enter>

InstallingPV.hyper 15 / 17

< alias fact ’disp {_fact []}’ <enter>

< fact 5 <enter>
> 00000078 , 120

’_fact’ is the recursive alias. ’fact’ is only provided to give a more
command like syntax. Note that this recursion is limited by both
the available stack (PowerVisor will give an error when the end of
the stack is getting close) and the maximum length of the commandline
(you can increase this maximum length with the prefs command).

If you want to use [] in the string you can use quotes :

< alias test ’print \[\]’ <enter>

The first string expansion leads to the definition of ’test’ as the command
’print \[\]’. The expansion done by ’print’ leads to the correct execution.

1.21 Installing PowerVisor : Attaching commands to keys

Using the attach command you can attach a command to a key (such
a key with a command attached to it is called a macro)

Example :

To add the list command to the <F1> key you can use :

< attach ’list’ 050 0 <enter>

If you press <F1> ’list’ is put on the stringgadget and an enter is
simulated (this means that ’list’ is also put in the history buffer).

If you do not want the stringgadget to be disturbed you can use :

< attach ’list’ 050 0 e <enter>

With remattach you can remove macros.

1.22 Installing PowerVisor : Files

If you like you can change the online help file. Read the ’QuickHelp’
document for more information about the quickhelp file format.

Note that if you start a line in the online help file with a ’\ensuremath{\lnot}’ ←↩
it will

not be printed on screen (with the help command).

When you have changed the online help file you must update PowerVisor-ctrl
with the following command :

InstallingPV.hyper 16 / 17

CLI< makehelp pv:c/PowerVisor-help pv:c/PowerVisor-ctrl word 2 <enter>

(Note that the online help files are probably in the S: subdirectory if
you have AmigaDOS 1.3 or older because the PROGDIR: feature is only
supported starting with AmigaDOS 2.0. With this feature a program can
see where the program executable is located. PowerVisor uses PROGDIR:
to locate the online help files, the error file and the menu file)

You can also change the error file PowerVisor-errors. Each line in
this file must always be 70 bytes long (including the newline).
The first line in the file corresponds with error -6.

If you use the AmigaDOS 2.0 version of PowerVisor you can also use
menus. All menus PowerVisor uses are in the PowerVisor-menus file.
Each line in this file has the following format (spaces are not
important) :

<command> [<title string> [<command string> [<shortcut>]]]

<command> is one of

’title’ for a menu titlebar
’item’ for a menu item
’sub’ for a sub item
’ibar’ for a horizontal bar in an item menu
’sbar’ for a horizontal bar in a sub menu
’end’ to end the menus (is required)

The other strings are strings in the PowerVisor syntax. This means that
you can use quotes (or MUST use quotes if there are spaces in the
string or other special things not supported in names (see Expressions))
or not (simple names).

The ’title’ command only uses the <title string>
The ’item’ command uses the <title string> and if the item has no

sub menus the <command string> is also used
<shortcut> is optional

The ’sub’ item used the <title string> and the <command string>
<shortcut> is optional

The other commands have no <title string>, <command string> or <shortcut>

Example :

> title Project
> item ’About’ ’print \’Hello world\0a\’’
> ibar
> item Quit quit Q
>
> title misc
> item ’Testing it’ ’disp 1’ ’1’
> item ’Testing it 2’ ’{disp 1;disp 2}’
> item ’Sub menus’
> sub ’Sub 1’ ’disp 1’

InstallingPV.hyper 17 / 17

> sub ’Sub 2’ ’disp 2’ ’2’
> end

1.23 Installing PowerVisor : Logical windows

Although there are already a lot of logical window parameters you can set
with the prefs command, there can be times that you need more. See the
Screens and Windows chapter to see how you can open logical and

physical windows.

Here is an example :

This sequence of commands opens two extra logical and physical windows
and tile them in a certain fashion :

Make the ’Main’ physical window a non-backdrop window with screen :
< screen 0 <enter>
Go to two bitplane mode and interlace with mode :
< mode fancy lace <enter>
Open two physical windows and two logical windows with the openlw
and openpw commands :
< openpw debug 0 0 500 200 <enter>
< openpw rexx 500 0 140 200 <enter>
< openlw debug debug 82 42 <enter>
< openlw rexx rexx 80 40 <enter>
Size the main physical window with size and move :
< size main 640 200 <enter>
< move main 0 200 <enter>

1.24 Installing PowerVisor : For the wizards

And last for the maximum flexibility... the PVCALL command!

Note that this command is not for the casual user. It is also not for the
experienced PowerVisor user. It is for the PowerVisor wizard :-) !!!

See the The Wizard Corner if you think you are a wizard.

	InstallingPV.hyper
	Installing PowerVisor (Tue Jul 14 16:48:08 1992)
	Installing PowerVisor : Commands used in this tutorial
	Installing PowerVisor : Functions used in this tutorial
	Installing PowerVisor : Introduction
	Installing PowerVisor : The 'mode' command
	Installing PowerVisor : The 'prefs' command
	Installing PowerVisor : The maximum number of lines in the history
	Installing PowerVisor : Some standard keys
	Installing PowerVisor : Setting the startup screen size
	Installing PowerVisor : Setting the stack fail level
	Installing PowerVisor : Setting default logical window parameters
	Installing PowerVisor : The default commandline length
	Installing PowerVisor : Some debug preferences
	Installing PowerVisor : Debug mode
	Installing PowerVisor : Installing pens
	Installing PowerVisor : Setting the default font
	Installing PowerVisor : The config file
	Installing PowerVisor : Other installation factors
	Installing PowerVisor : Setting the colours
	Installing PowerVisor : Setting alias commands
	Installing PowerVisor : Attaching commands to keys
	Installing PowerVisor : Files
	Installing PowerVisor : Logical windows
	Installing PowerVisor : For the wizards

